
Contributing by
Testing WordPress
Dive into Contributing to WordPress

and Make a Difference by Testing

Evan Mullins @circlecube

evanmullins.com

I use WordPress every day in my role at
Bluehost, where I build WordPress tools for
customers and contribute back to the project.
I also use it for my own freelance and hobby
projects. I love the visual problem-solving side of
websites and strive to make the web a better
place for everyone—even your grandma.

http://evanmullins.com/test

Letʼs explore the ways you can
contribute by testing WordPress.

Follow Along:

evanmullins.com

https://evanmullins.com/test/

You can!
Even if you have not yet
contributed to WordPress and
feel under-qualified.

It might seem like a small
contribution but it helps move
the project along.

All are invited and welcome to
help test on any level you can.

Who Can Test?

Even You Can Test WordPress!

Testing WordPress is a valuable contribution that anyone can make!

Why? Contributions keep open source projects alive and moving!

Opportunities to Test WordPress

1. Test Releases ✹
2. Test Tickets/Issues ✹
3. Outreach & Usability Tests
4. Accessibility Tests
5. Automated Tests

1. Testing Releases

Release Cycle Testing

WordPress

6.8

March 4, 2025

March 11 March 18 March 25 April 1

April 8April 14April 15

October 21, 2025

October 28 November 4 November 11 November 18

November 25December 1December 2

WordPress

6.9

Release Party Testing

Release Party Testing

During each release, a build is
available to test in real-time just
before the release is public.

Release parties are held in the
official WordPress slack (#core).

The slack team is open and free to
join with a wordpress.org account.

https://wordpress.org/photos/photo/939666abaa/

Release Party Testing

WP-CLI Command:

> wp core update https://wp.org/wp-X.Y.Z.zip

WordPress Beta Tester Plugin

https://wordpress.org/plugins/wordpress-beta-tester/
https://wordpress.org/plugins/wordpress-beta-tester/

More Slack Meeting Shout-outs

<testing-onboarding> in #core-test
Open meeting to ask questions about testing and
working with Trac.

<patch-testing-scrub> in #core-test
Go through a list of tickets and help move each one
towards resolution. Determining the next step
needed, test, and update the ticket.

2. Testing Issues

Testing Bug Fixes

With every bug or issue that is
reported in WordPress, we have the
opportunity to:

1. reproduce the issue
2. test that a patch fixes the issue
3. that it doesnʼt cause other issues.

2 Paths: Core/Trac OR Gutenberg/GitHub

Trac Tickets - Path 1

WordPress uses Trac, an open source bug tracker tool.

Tickets are used for both bug reports and feature development.

Tickets may be created by anyone with a WordPress.org account.

Goal to keep in mind: Participate in constructive dialog to resolve issues.

https://core.trac.wordpress.org/tickets/latest

GitHub Issues - Path 2

The block and site editor are both part of the Gutenberg feature plugin.

Issues related to these are in the github gutenberg project.

The ticket lifecycle is essentially the same.

Not to be confused with the WordPress mirror on github, which integrates with trac.

https://github.com/WordPress/gutenberg

https://github.com/WordPress/gutenberg/issues

https://github.com/WordPress/wordpress-develop

1. Report
2. Reproduce *
3. Patch
4. Validate *
5. Merge
6. Ship

Simplified Bug Lifecycle

* requires testing

Report

https://core.trac.wordpress.org/newticket
https://core.trac.wordpress.org/newticket

Report

Workflow Keywords

You can contribute at any state,
but pay close attention to
workflow keywords:

● #needs-testing indicates the
ticket is looking for testers

● #has-patch the ticket has a
patch and is ready for testing
to ensure it fixes the issue

● #needs-screenshots can you
reproduce the issue and add
screenshots?

Security Vulnerabilities
should be reported at HackerOne

and not publicly on trac!

Report

https://hackerone.com/wordpress?type=team

Reporting

A user (Issue Reporter) submits a bug in WordPress core.

The Reporterʼs involvement doesnʼt end after submitting the ticket. Others may
request more information with the #reporter-feedback keyword.

Reporters can also help validate and test that proposed patches fix the bug.

Report

Report

https://core.trac.wordpress.org/ticket/40578

Reproduce

Can the issue be reproduced as reported?

If you can, elaborate on the issue, write clear steps to reproduce and add screenshots.

If you canʼt, ask for more information and add the #reporter-feedback keyword to let
the reporter know too.

Reproduce

https://core.trac.wordpress.org/ticket/40578
https://core.trac.wordpress.org/ticket/40578

Reproduce

https://core.trac.wordpress.org/ticket/61940
https://core.trac.wordpress.org/ticket/61940

Patch

Anyone can submit a code changes that fix reported bugs.

This process is also known as “patching”

Patches on a ticket are either a submitted file that shows
the code changes or a pull request to the github mirror.

Patch

GitHub Pull Requests

The equivalent of a Patch in git is a Pull Request, itʼs just a collection of code changes.

Patch

Patch

https://github.com/WordPress/gutenberg/pulls
https://github.com/WordPress/wordpress-develop/pulls

Patch

Validate or Test a Patch

Testing patches is an important part of ensuring the quality of WordPress.

Steps:

1. WordPress Environment
2. Reproduce the issue
3. Apply the patch
4. Perform Testing: try to reproduce the issue again
5. Give feedback

Validate

Test Environment

There are multiple ways to set up a local core WordPress environment. Find one that
works for you. There are many helpful tools:

● Docker
● wp-env
● Local
● Studio
● Playground

Validate

https://localwp.com/
https://wordpress.org/playground
https://localwp.com/
https://localwp.com/
https://wordpress.org/playground
https://developer.wordpress.com/studio/

Applying Code Updates

There are also multiple ways to update code to test updates in WordPress:

.diffs PRs Playground

Validate

https://wordpress.org/playground
https://core.trac.wordpress.org/ticket/40578
https://core.trac.wordpress.org/ticket/40578

Apply .diff for testing

Apply a patch to your local working copy with grunt commands.

> npm run grunt patch - after download the diff

> npm run grunt patch:00000 - include ticket number

> npm run grunt patch:<link.to/ticket/00000> - link

> npm run grunt patch:<link.to/00000.diff> - diff link

Validate

Validate

Validate

https://core.trac.wordpress.org/ticket/51551
https://core.trac.wordpress.org/ticket/51551

Apply .diff for testing

The same grunt commands work with PRs too

> npm run grunt patch:<link.to.patch/00000.diff>
> npm run grunt patch:<link.to.pr/00000>

or checkout the git branch associated with the pull request

Validate

Validate

https://wordpress.org/playground

Validate

https://github.com/WordPress/wordpress-develop/pull/7264

Validate

Validate

Validate

Give Feedback, Continue the Discussion

Whether testing in Playground or locally, be sure to give feedback after testing a patch!

Most importantly, indicate if the patch fixes the issue for you.

As always, screenshots are worth a thousand words!

There are even templates to get you started if youʼre not sure what to say.

Validate

https://core.trac.wordpress.org/ticket/51551
https://core.trac.wordpress.org/ticket/51551

== Test Report
This report validates that the indicated patch addresses the issue.
Patch tested: REPLACE_WITH_PATCH_URL

=== Environment
- OS: macOS 12.3.1
- Web Server: Nginx
- PHP: 7.4.29
- WordPress: 6.0-RC1-53341-src
- Browser: Safari 15.4
- Theme: Twenty Twenty-Two
- Active Plugins:
 - Gutenberg 13.2.0
 - WordPress Beta Tester 3.2.1

=== Actual Results
- ✅ Issue resolved with patch.

=== Additional Notes
- Any additional details worth mention.

=== Supplemental Artifacts
Add Inline: [[Image(REPLACE_WITH_IMAGE_URL)]]
Or
Add as Attachment

Validate

Once the bug is reported, reproduced, patched and
validated a core committer may then merge the code
changes.

This updates the source code to WordPress and is
typically then released in the next release!

Merge and Ship
Merge & Ship

3. Usability Testing/Outreach

FSE Outreach Experiment Project

In 2020, experiment outreach project started to better connect those building with
WordPress and upcoming features.

The program now encompases various hallway hangouts, calls for testing, and an
outreach channel in slack.

https://wptavern.com/fse-outreach-experimental-loses-two-words-gains-new-life

#outreach

A slack channel where
non-contributors and
contributors gather to discuss
and test coming features.
Beyond bug reports and PRs.
A space for site builders and
extenders.

4. Accessibility Testing

Testing for Web Accessibility (a11y)

One in four people in the United
States has a disability.

Technology built with
accessibility in mind makes
things easier for everyone.

WordPress tests against the
WCAG 2.1 AA guidelines.

A11y

● Keyboard Navigation
● Color Contrast
● Screen Reader Compatibility
● Image alt text
● …

1. Perceivable
Is all content available to everyone?

2. Operable
Can visitors use all functionality?

3. Understandable
Can visitors comprehend all content?

4. Robust
Can visitors use any device?

aXe browser addon for Chrome and FireFox

A11y: Resources

https://www.deque.com/aXe/

A11y: Get Involved

WordPress Accessibility Day 2025
October 15th-16th - Free Livestream

Accessibility Handbook | Gutenberg

Trac tickets with an accessibility focus

Gutenberg ticket labels:
 Needs Accessibility Feedback
[Focus] Accessibility (a11y)

https://make.wordpress.org/accessibility/handbook/
https://make.wordpress.org/accessibility/gutenberg-testing/
https://core.trac.wordpress.org/report/30?FOCUS=accessibility
https://github.com/WordPress/gutenberg/issues?q=is%3Aopen+is%3Aissue+label%3A%22Needs+Accessibility+Feedback%22
https://github.com/WordPress/gutenberg/issues?q=is%3Aopen+is%3Aissue+label%3A%22%5BFocus%5D+Accessibility+%28a11y%29%22

5. Automated Testing

Automated Testing

Automated Tests check that each

component runs as it should.

Unit tests validate the expected behavior

of isolated source code.

E2E (end to end) tests simulate a real

user scenario and validate user flows.

PHP Unit Tests - PHPUnit

PHPUnit for PHP testing:

npm install

npm run build:dev

npm run env:start

npm run env:install

npm run test:php

26129 tests completed in 5:50

Tests: 26129, Assertions: 92834,
Warnings: 86, Skipped: 37.

https://github.com/WordPress/wordpress-develop/blob/trunk/tests/phpunit/tests/admin/includes/wpGetPluginActionButton.php

JS Unit tests - QUnit

QUnit for Javascript testing

● Clone wordpress-develop

npm install

composer install

npm run build

● Open /tests/qunit/index.html

213 tests completed in 2750 milliseconds,
with 0 failed, 0 skipped, and 0 todo.

514 assertions of 514 passed, 0 failed.

https://github.com/WordPress/wordpress-develop/blob/trunk/tests/qunit/wp-admin/js/password-strength-meter.js

● Clone wordpress-develop
● Setup and run the wordpress environment

npm install

npm run env:start

npm run test:e2e

Gutenberg also has it’s own playwright tests.

End to End (e2e) Tests - Playwright

https://github.com/WordPress/wordpress-develop/blob/trunk/tests/e2e/specs/edit-posts.test.js

Watch the tests run: npm run test:e2e -- --ui

End to End (e2e) Tests - Playwright

Recap Testing Opportunities

1. Test Releases
2. Test Tickets/Issues
3. Outreach & Usability Tests
4. Accessibility Tests
5. Automated Tests

WordPress Wants You to Contribute via Testing

Questions?

evanmullins.com

Thank You!

https://evanmullins.com/test/

