

Evan Mullins @circlecube

evanmullins.com

Evan Mullins uses WordPress daily in his role at
Bluehost where he builds WordPress tools for
hosting customers and contributes back to
WordPress as well as for his own projects (freelance
and hobbies).

Evan loves the visual problem-solving aspect of web
development and strives to make the web an
all-around better place for you & your grandma.

http://evanmullins.com/test

Learn all about contributing to WordPress by testing it!

Explore the ways you can contribute today.

Follow Along: evanmullins.com/test

Contributing by Testing

https://evanmullins.com/test/

You can!
Even if you have not yet
contributed to WordPress and
feel under-qualified.

It might seem like a small
contribution but it helps move
the project along.

All are invited and welcome to
help test on any level you can.

Who Can Test?

You Can Test WordPress!

Testing WordPress is a valuable contribution that anyone can make!

Contributions from users like you keep open source projects alive and moving.

Opportunities to Test WordPress

1. Test Releases
2. Test Tickets/Issues
3. Usability Tests
4. Automated Tests
5. Accessibility Tests

1. Testing Releases

Release Cycle Testing

Test WordPress Releases

Before every release of WordPress, pre-release versions are created.

These are called Beta releases or Release Candidate releases.

Download these pre-releases and test them before they are available to the public.

The pre-release step in the Release Cycle usually lasts several weeks at least and details
of the schedule are published on the make.wordpress.org blog.

For example, 6.7 Beta 1 is expected on October 1, 2024, RC1 is expected October 22, and
the final 6.7 release is expected November 12.

https://make.wordpress.org/core/6-7/

Beta Tester Plugin

<test-scrub> Meetings in #core-test

Contributors come together to go through a list of tickets and help move each one
towards resolution. Determining the next step needed and update the ticket.

If a ticket captures your interest, go ahead and join the discussion in the comments on
the ticket after the scrub.

A test scrub is a great way to find tickets where you can team up with other contributors
to work together later on reproducing issues, giving feedback, adding test reports, verify
the feature is working as intended.

https://make.wordpress.org/chat/

Release Party Testing

Release Party Testing

During each release, a build is
available to test in real-time just
before the release is public.

Release parties are held in the
official WordPress slack (#core).

The slack team is open and free to
join with a wordpress.org account.

https://wordpress.org/photos/photo/939666abaa/

Release Party Testing

WP-CLI Command:

wp core update https://wordpress.org/wordpress-X.Z.zip

Or you can use the WordPress Beta Tester Plugin, once the release party begins the
testing phase it will find the available update.

More Slack

<new-contributor-meeting> in #core

Open meeting to ask questions about submitting patches, working with Trac, deciding
which tickets to work on, or contributing to core in general. (Every month on the 2nd,
4th Wednesday)

Slack is a super useful tool to interact with the WordPress community learn how to
better contribute.

2. Testing Issues

Testing Bug Fixes

With every bug or issue that is
reported in WordPress, we have the
opportunity to:

1. reproduce the issue
2. test that a patch fixes the issue
3. that it doesnʼt cause other issues.

Bug Ticket Lifecycle/Workflow

1. User finds a bug and submits it.
2. Bug confirmed/reproduced.
3. Developer submits code changes (patch/PR).
4. Users test the patch confirming it fixes the bug.
5. A core committer applies the patch to the core code.
6. Bug ticket is closed/fixed.
7. Next release will include code changes.
8. Everyone involved receives credit/props for contributing to WordPress.

Paths: Core/Trac OR Gutenberg/GitHub

Introducing Trac

Trac

WordPress uses Trac, an open source bug tracker tool.

Tickets are used for both bug reports and feature development.

Tickets may be created by anyone with a WordPress.org account.

Workflow Keywords

● good-first-bug
● has-patch
● needs-patch
● needs-screenshots
● needs-unit-tests
● has-unit-tests
● has-screenshots
● dev-feedback
● dev-reviewed
● needs-testing
● reporter-feedback

Best Practices

Make sure you are on the latest version of WordPress. To avoid duplicate tickets search
for any existing ticket for this issue already.

When submitting a new issue, include:

● a detailed description of the issue
● steps to reproduce the issue consistently
● describe the expected vs actual results
● attach screenshots
● any additional information that could be useful:

Operating System/browser and version/server details/PHP version

Security Vulnerabilities
should be reported at HackerOne

and not publicly on trac!

https://hackerone.com/wordpress?type=team

Video: How To Use Trac

https://learn.wordpress.org/tutorial/how-to-use-trac/

Tickets

The goal: participate in a constructive dialog to resolve the issue.

You can contribute at any state, but pay close attention to workflow keywords:

● needs-screenshots - can you reproduce the issue and add screenshots?
● needs-testing - indicates the ticket is looking for testers
● has-patch - test the patch to ensure it fixes the issue

Gutenberg - Block Editor

GitHub Issues

While core WordPress issues are tracked in Trac, since the block and site editor are both
still part of the Gutenberg feature plugin, issues related to this part of WordPress are
managed in the gutenberg github project.

Create Gutenberg issues on the project's GitHub issue tracker.

The ticket flow is essentially the same, but the issue is reported and fixed on github
rather than trac.

https://github.com/WordPress/gutenberg/issues

GitHub Pull Requests

The equivalent of a Patch in git is a Pull Request.

https://github.com/WordPress/gutenberg/pulls

Ticket Walkthrough

Reporting an Issue

● A user (Issue Reporter) finds a bug in WordPress core
○ (not a theme or a plugin, and not a support request)

● Confirm it is not yet reported
● Submits a bug report to Trac

Reporter involvement doesnʼt end after submitting the ticket. Others may request more
information with the reporter-feedback keyword.

Reporters can also help verify that proposed patches fix the bug.

https://core.trac.wordpress.org/ticket/40578

Reproducing Issues

See if you can reproduce issues reported in tickets.

If you can, elaborate on the issue, write clear steps to reproduce and add screenshots.

If you canʼt, ask for more information and add the reporter-feedback keyword to let the
reporter know too.

https://core.trac.wordpress.org/ticket/61940

Patch

Those who can code, can submit fixes for bugs that have
been reported.

This process is also known as “patching”

Patches on a ticket are either a submitted file that shows
the code changes or a pull request to the github mirror.

Testing a Patch

Testing patches is an important part of ensuring the quality of WordPress.

Steps:

1. WordPress Environment
2. Reproduce the issue
3. Apply the patch
4. Perform Testing: try to reproduce the issue again
5. Give feedback on the ticket

Environment

There are multiple ways to set up a local core WordPress environment for testing (and
development). Find one that fits you.

There are some tools that make this fairly simple: wp-env, Local.

Or simply use Playground.

https://wordpress.org/playground

Testing Patches in Playground

https://wordpress.org/playground

Testing in Playground

WordPress Playground is a project that creates a full WordPress instance entirely within
the browser. “WordPress in one click!”

A really good fit for someone that isn't super technical, experienced with programming,
or comfortable applying patches to code locally on their own computer.

To test using playground instance:

● If in Trac, follow the View PR button to the PR on github.
● On the PR, find the “Test Using WordPress Playground” comment.
● Click the “Test this pull request with WordPress Playground” link!

https://wordpress.org/playground/

https://core.trac.wordpress.org/ticket/51551
https://core.trac.wordpress.org/ticket/51551

https://github.com/WordPress/wordpress-develop/pull/7264

Testing Patches Locally

.diff files

https://core.trac.wordpress.org/ticket/40578
https://core.trac.wordpress.org/ticket/40578

WordPress Git-ified

WordPress GitHub mirror

For developers who prefer using
git for version control.

Patch via Pull Request (PR)

https://core.trac.wordpress.org/ticket/51551
https://core.trac.wordpress.org/ticket/51551

Apply .diff for testing

Apply a patch to your local working copy with grunt commands.

Download the diff file from trac ticket and apply with a grunt command.

grunt patch

If multiple files are found, you'll be asked which one to apply.

Apply .diff for testing

Add the ticket number to have grunt download the diff file too:

grunt patch:00000

Or a link to the ticket:

grunt patch:<https://trac…/ticket/00000>

Or a link to the diff file:

grunt patch:<https://trac…/00000.diff>

(Replace the 00000 with the ticket number)

Apply .diff for testing

You can also use a github patch link for grunt:

grunt patch:<https://PR/URL/00000.diff>

You can also use a PR link for grunt:

grunt patch:<https://PR/URL/00000>

Feedback

Give Feedback

In Playground or locally, be sure to give feedback after testing a patch!

Most importantly, indicate if the patch fixes the issue for you.

There are templates to get you started if youʼre not sure what to say.

== Test Report
This report validates that the indicated patch addresses the issue.
Patch tested: REPLACE_WITH_PATCH_URL

=== Environment
- OS: macOS 12.3.1
- Web Server: Nginx
- PHP: 7.4.29
- WordPress: 6.0-RC1-53341-src
- Browser: Safari 15.4
- Theme: Twenty Twenty-Two
- Active Plugins:
 - Gutenberg 13.2.0
 - WordPress Beta Tester 3.2.1

=== Actual Results
- ✅ Issue resolved with patch.

=== Additional Notes
- Any additional details worth mention.

=== Supplemental Artifacts
Add Inline: [[Image(REPLACE_WITH_IMAGE_URL)]]
Or
Add as Attachment

3. Usability Testing/Outreach

FSE Outreach Experiment Project

In 2020, experiment outreach project started to better connect those building with
WordPress and upcoming features.

The program now encompases various hallway hangouts, calls for testing, and an
outreach channel in slack.

https://wptavern.com/fse-outreach-experimental-loses-two-words-gains-new-life

Hallway Hangouts

Come together as WordPress users
early in development to talk about
new features to flush out concerns
sooner, get more folks involved, and
find ways to work better together in a
video call open to anyone.

#outreach

A slack channel where
non-contributors and
contributors gather to discuss
and test coming features.
Beyond GitHub bug reports and
PRs - a channel for site builders
and extenders.

4. Automated Testing

Automated Testing

Automated Tests check that each

component runs as it should.

Unit tests validate the expected behavior

of isolated source code.

E2E (end to end) tests simulate a real

user scenario and validate user flows.

JS Unit tests - QUnit

QUnit for Javascript testing

● Clone wordpress-develop

npm install

composer install

npm run build

● Open //tests/qunit/index.html

213 tests completed in 2750 milliseconds,
with 0 failed, 0 skipped, and 0 todo.

514 assertions of 514 passed, 0 failed.

PHP Unit Tests - PHPUnit

PHPUnit for PHP testing:

npm install

npm run build:dev

npm run env:start

npm run env:install

npm run test:php

With e2e (end to end) tests we simulate a real user scenario and validate user flows. In
concrete, running an e2e test involves setting up a production-like environment,
opening a browser and interacting with the application as it was a real user
manipulating the interface. WordPress e2e tests are written with Playwright.

● Clone wordpress-develop
● Setup and run the wordpress environment

npm install

npm run env:start

npm run test:e2e

End to End (e2e) Tests - Playwright

● Or watch the tests run

npm run test:e2e -- --ui

End to End (e2e) Tests - Playwright

5. Accessibility Testing

Testing for Web Accessibility

One in four people in the United
States has a disability.

Technology built with
accessibility in mind makes
things easier.

WordPress tests against the
WCAG 2.1 AA guidelines.

A11y

● Keyboard Navigation
● Color Contrast
● Screen Reader Compatibility
● Image alt text
● …

Four principles:

1. Perceivable
Is all content available to everyone?

2. Operable
Can visitors use all functionality?

3. Understandable
Can visitors comprehend all content?

4. Robust
Can visitors use any device?

A11y: Get Involved

WordPress Accessibility Day 2024
October 9th-10th - Free Livestream

Accessibility Handbook | Gutenberg

#accessibility #accessibility-testing

Trac tickets with accessibility focus

Github tickets with Needs Accessibility
Feedback or [Focus] Accessibility (a11y) labels.

https://make.wordpress.org/accessibility/handbook/
https://make.wordpress.org/accessibility/gutenberg-testing/
https://core.trac.wordpress.org/report/30?FOCUS=accessibility
https://github.com/WordPress/gutenberg/issues?q=is%3Aopen+is%3Aissue+label%3A%22Needs+Accessibility+Feedback%22
https://github.com/WordPress/gutenberg/issues?q=is%3Aopen+is%3Aissue+label%3A%22Needs+Accessibility+Feedback%22
https://github.com/WordPress/gutenberg/issues?q=is%3Aopen+is%3Aissue+label%3A%22%5BFocus%5D+Accessibility+%28a11y%29%22

aXe browser addon for Chrome and FireFox

A11y: Resources

https://www.deque.com/aXe/

Opportunities to Test WordPress

1. Testing Releases
2. Testing Issues
3. Usability Testing
4. Automated Tests
5. Accessibility Testing

WordPress Wants You to Contribute via Testing

Questions?

Talk Notes: https://evanmullins.com/test/

Thank You!

https://evanmullins.com/test/

